Organizer: UNITAR

Theme: Improving Eco-Efficiency: Green Growth for Local Governments

Venue: International Peace Center, Seogwipo City, Korea

Date: May 6-8, 2011

The Concept and Implications of Eco-Efficiency

Prof. Dai-Yeun Jeong (Jeju National University)

contents

- I. Original Definition of Eco-Efficiency
- II. New Approach to Eco-Efficiency
 - 1. Effectiveness and Efficiency
 - 2. Eco-Efficiency
- III. Methodology for Achieving Eco-Efficiency
- IV. Eco-Efficiency Indicator
- V. Conclusion The Implications of Eco-Efficiency
 - 1. Ideological Implications
 - 2. Practical Implications
 - 3. Implications for Local Economic Development
 - 4. Practical Approach to Local Economic Development
 - 5. The Comprehensive and Ultimate Implication

- The 1992 Earth Summit (Rio De Janeiro)
 - endorsed eco-efficiency
 - as a means for companies to implement Agenda 21
 - in the private sector
- The term was coined
 - by World Business Council for Sustainable Development (WBCSD)
 - in its 1992 publication "Changing Course".
 - describing as the concept of creating more goods and services while using fewer resources and creating less waste and pollution.

- According to WBCSD, eco-efficiency is achieved
 - through the delivery of competitively priced goods and services that satisfy human needs and bring quality of life
 - while progressively reducing environmental impacts of goods and resource intensity
 - throughout the entire life-cycle to a level at least in line with the Earth's estimated carrying capacity.

- Strategies for achieving eco-efficiency (WBCSD)
 - reduction in the material intensity of goods or services
 - reduction in the energy intensity of goods or services
 - reduced dispersion of toxic materials
 - improved recyclability
 - maximum use of renewable resources
 - greater durability of products
 - increased service intensity of goods and services
- Basic version on eco-efficiency (WBCSD)
 - reduction in ecological impacts translates into an increase in resource productivity
 - which in turn can create a competitive advantage

- The 5th Ministerial Conference on Environment and Development in Asia and Pacific
 - organized by United Nations ESCAP (Economic and Social Commission for Asia and Pacific)
 - held in Seoul in 2005
 - applied its conceptual meaning to the whole national economy as an ideology of green growth
- The 2002 Earth Summit (Johannesburg)
 - declared eco-efficiency as the core practical means to the achievement of sustainable development
 - recommended all countries to adopt eco-efficiency
- Eco-efficiency has become synonymous with a management philosophy geared towards sustainable development.

1. Effectiveness and Efficiency

- The state goal is achieved, mobilizing an institutionalized means
- The means mobilized are the determinants of how successfully the goal is achieved.
- Effectiveness
 - degree to which the goal is achieved.
 - a measure of the match between the goal and its achievement.
 - focusing on "how much the goal is achieved".
 - "doing the right thing for achieving goal".

Efficiency

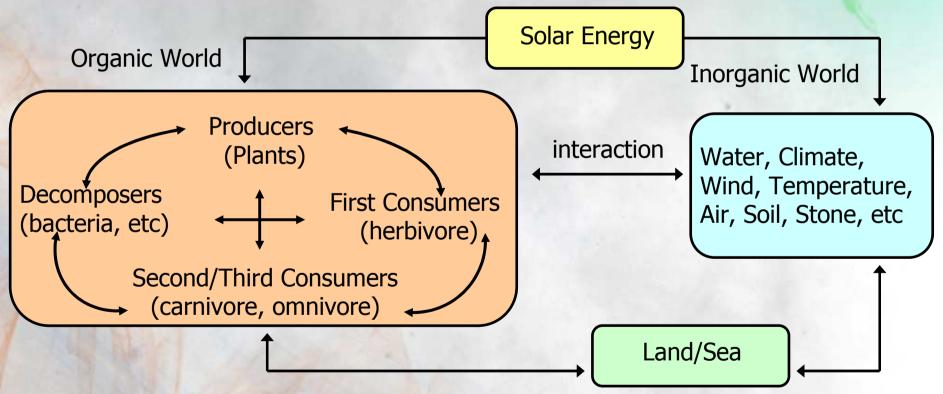
- the extent to which the means mobilized achieves its goal without wasted resources, effort, time, or money (using the smallest quantity of resources possible)
- a measure of the match between the goal and the means mobilized in terms of rationality and/or relevance.
- "doing thing the right way for achieving goal".

2. Eco-Efficiency

- a compound concept including both ecological and economic efficiency.
- a concept implying an attempt to achieve both economic and ecological efficiency.

- Economic efficiency
 - is to achieve economic development efficiently
 - in a way of maximizing economic development
 - through minimum use of natural resources
 - with minimum emission of polluted materials in the process of production, distribution, and consumption.
- Ecological efficiency
 - is the efficiency with which energy is transferred from one trophic level to the next.
 - is determined by a combination of efficiencies relating to organismic resource acquisition and assimilation in an ecosystem.

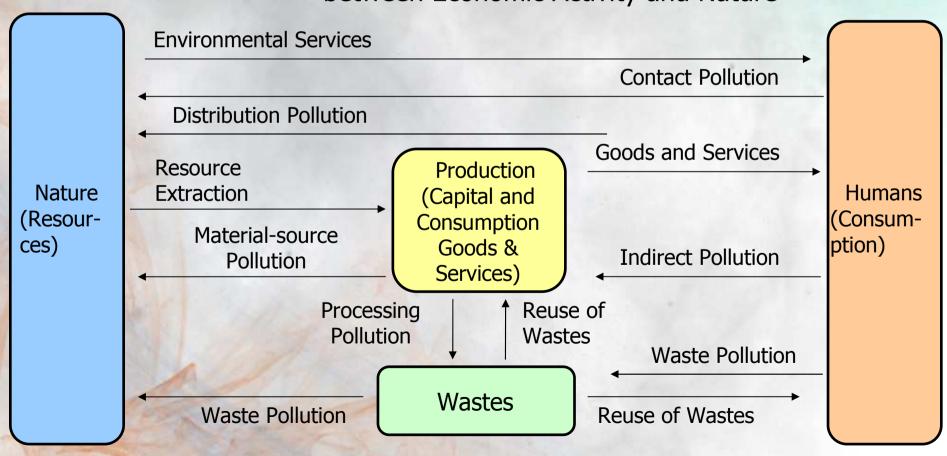
- Eco-efficiency as a compound concept of both economic and ecological efficiency in a framework
 - is a vision for the production of economically valuable goods and services while reducing the ecological impacts of production.
 - a means producing more with less impact on ecosystem.
 - two are in conflict in terms of their goal.
 - eco-efficiency: weak sustainability
 - eco-effectiveness: strong sustainability


- Measuring eco-efficiency
 - eco-efficiency=(environmental cost/economic output)
 - environmental cost can be, for example, (indicator)
- pollution emission (eg. CO2, SOx)
- resource-used (eg. energy or water used)
- cost associated with an environmental burden (eg. traffic congestion cost)
 - economic output can be, for example, (indicator)
- value-added of benefit (eg. GDP per capita)
- unit of product or service (eg. per km, per m2)
- cost associated with an environmental burden (eg. traffic congestion cost)

- Two important issues related to eco-efficiency
 - methodology as a practical means to achieve eco-efficiency.
 - indicators for measuring the state and effectiveness of eco-efficiency

- Definition of methodology
 - a body of practical means, procedures, and rules
 - being used for achieving the stated goal.
 - so, methodology should be both effective and efficient
- The principal focus on developing methodology of eco- efficiency
 - more economic production
 - with less impact on nature as an ecosystem
- Thus, methodology
 - should be developed in way to be maximum effective and efficient
 - on the basis of mutual relationship between economic activity and nature as an ecosystem

■ Nature as an ecosystem


<Figure 1> The Structure of Nature as an Ecosystem

★ Ecological process (mutual dependence: competition, symbiosis, food-chain, etc) → resulted in self-regulating system

■ The mechanism of mutual relationship between economic activity and nature

<Figure 2> The mechanism of Mutual Relationship between Economic Activity and Nature

<Figure 1> enables us to identify what categories should be covered in the development of methodology for achieving ecoefficiency (<Table 1>)

<Table 1> Categories of Eco-Efficiency (Example)

Category	Category
Production System	Lifestyle in Everyday Life
Technology	Waste
Pattern of Energy Use	Conservation of Ecosystem
Transportation	Socio-economic Institutions

■ Methodology depends on how successfully eco-efficiency is achieved.

- A reality
 - is composed of many sub-elements
 (eg. human organism, ecosystem, economic activity)
 - each sub-element is used as an indicator connotating the reality as a whole.
- Definition of indicator
 - a variable for observing a reality
 - a measure summarizing a reality
 - a proxy measure of a reality
 - a value providing/describing the information on a reality

- Roles of indicator
 - synthesizing information on the reality in terms of current state and change
 - then, can be used as basic data in the process of decision-making for the management of the reality
 - can be used as a critical evaluation scale on the direction and result of policy launched for eco-efficiency by indicator and their whole set.

■ Major indicators of eco-efficiency

<Table 2> Major Indicators of Eco-Efficiency (Example from <Figure 1>)

Category	Indicator	Category	Indicator
Production System	o Land-use o Resource Productivity	Lifestyle in Everyday Life	o Saving Energy o Saving Resource
Technology	o Clean Technology o R&D for Development of Technology	Waste	o Reduction o Reuse o Recycling
Pattern of Energy Use	o Pollution Emission o Energy Intensity o Energy Efficiency o Energy Elasticity	Conservation of Ecosystem	o Individual Component of Ecosystem o Flow of Energy and Material
Transportation	o Fuel Intensity	Socio-economic Institutions	o Regulation by Directiveness o Regulation by Incentives o Tax Reform

Major indicators of eco-efficiency (Table 3 cited from United Nations)

<Table 3> Framework and Set of Eco-Efficiency Indicator Using Monetary output as Numerator

Category	Resource-use Intensity	Environmental Impact Intensity			
Economic-wide Indicators					
	o Water Intensity [m³/GDP] o Energy Intensity [J/GDP] o Land-use Intensity [km²/GDP] o Material Intensity [DMI/GDP]	o Emission to Water Intensity [t/GDP] o Emission to Air Intensity [t/GDP] o GHG Emissions Intensity [t/GDP]			
Sectoral Indicators	Sectoral Indicators				
Agriculture	o Water Intensity [m³/GDP] o Energy Intensity [J/GDP] o Land-use Intensity [km²/GDP]	o CO ₂ Intensity [t/GDP] o CH ₄ Intensity [t/GDP]			
Industry	o Energy Intensity [J/GDP] o Water Intensity [m³/GDP] o Material Intensity [DMI/GDP]	o CO ₂ Intensity [t/GDP] o Solid Waste Intensity [t/GDP]			
Manufacturing	o Energy Intensity [J/GDP] o Water Intensity [m³/GDP] o Material Intensity [DMI/GDP]	o CO ₂ Intensity [t/GDP] o BOD Intensity [t/GDP] o Solid Waste Intensity [t/GDP]			
Public and Services Sector	o Energy Intensity [J/GDP] o Water Intensity [m³/GDP] o Land-use Intensity [km²/GDP]	o CO ₂ Intensity [t/GDP] o Wastewater Intensity [m³/GDP] o Municipal Solid Waste Intensity [t/GDP]			
Transport Sector	o Fuel Intensity [J/GDP]	o CO ₂ Intensity [t/GDP]			

Source: United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP). 2009. *Eco-Efficiency Indicators: Measuring Resource-Use Efficiency and the Impact of Economic Activities on the Environment.* pp. 9-10.

Note: J; Joule, DMI; Direct Material Input

- Significant differences between Tables 1 and 2
 - indicators can be selected differently.
 - the sources arising the difference
- the stated goal
- methodology adopted
- framework designed for the development of indicators, etc.

1. Ideological Implications

- traditional approach
 - before the 1960s: traditional industrialization without concern on environment
 - The 1970s: development of national economy with ex post facto response to environment
 - The 1980s: environmentally friendly national economy with an expansion of *ex post facto* response to both environment and consumption
 - The 1990s the early 2000s: precautionary policy of national economy with both *apriori* and *ex post facto* response to environment

- eco-efficiency
 - not simply an environmental management
 - is an integrated approach to both economy and environment as an integrated system

2. Practical Implications

- considering appropriate carrying capacity of nature
- self-reflection on the existing market based on market-priced paradigm characterized as that
 - market price is determined by production and consumption
 - ecological cost is not included in market price
 - difference arises between market price and ecological cost
 - the most efficient activity in terms of market price is the worst activity in terms of ecological cost
 - from a long-point of view, eco-efficiency paradigm would be beneficial than market-priced one for sustainable development through the harmonization of economy with ecosystem

3. Implications for Local Economic Development

- eco-efficiency principles are more profitable and competitive in that they
 - use less virgin resources, water and energy,
 - generate less waste and pollution,
 - improve production methods,
 - develop new products or services,
 - use or recycle existing materials, etc.
- core focus: how to reduce the current gap between market price and ecological cost
- development of indicators
 - on the base of the stated goal and methodology
 - but, different indicator by region sector
- construction of the indicators as a database for
 - identifying, measuring and evaluating the current state and change
 - supplementing and/or revising the methodology

4. Practical Approach to Local Economic Development

- step-by-step approach
 - 1st: improvement in the process of production (reduction of production cost)
- 2nd: development of new environmentally friendly product (increase in profit)
- 3rd: change of market mechanism from material goods-based one to service-creation opportunity one (reduction of material use and change in consumption pattern)

- Construction of governance system for drawing social consensus among interest groups involved in eco-efficiency
- local government
- business corporations
- civic organizations
- stakeholders
- citizens
- expert groups

5. The Comprehensive and Ultimate Implication

- environmentally sound,
- and humanly desirable

Many Thanks for Your Listening!!