e-GNSS 即時定位系統與地籍圖之探討

研究機關：臺中市中興地政事務所

研究人員：技士 陳正軒、張喬博

研究期間：104 年 1 月 1 日至 104 年 8 月 20 日

中華民國 104 年 8 月 25 日
e-GNSS 即時定位系統與地籍圖之探討

陳正軒¹ 張喬博¹

摘要

受惠於現今行動通訊發達，加上內政部國土測繪中心大力推動 e-GNSS 即時動態定位系統，使得高精度 GPS 即時定位不再遙不可及，且 e-GNSS 具備多種坐標框架解算，並保證內政部未來公佈新框架時亦會提供相關轉換參數，若能應用 e-GNSS 即時動態定位系統於地籍測量作業，除可克服圖根點位相互通視不良之問題外，亦能克服短基線施測問題，其即時高精度之定位成果更能增進作業效率。

地政事務所通常由單一測量編組進行複丈相關作業，恰與 e-GNSS 即時動態定位系統作業方式密合，成果也經相關文獻證明能應用於地籍測量，但施測方式不同以往，為此本研究希望能將 e-GNSS 即時動態系統成果與傳統測量方式綜合比較，以此經驗於他人參考。

本研究先採用 GPS 靜態接收方式，透過傳統多組多基準站同時施測，並將靜態 GPS 觀測資料進行網形平差，瞭解 GPS 测量能否適用於研究區域，之後應用單人單機於不同基準站透過 e-GNSS 即時動態定位系統取得觀測資料，將原始資料、三維轉換、參數轉換後成果交叉比對，以客觀精度分析評論 e-GNSS 即時動態定位能否達到精度規範，並探討何種模式最適合地籍測量，同時就施測所需時間、人力消耗、解算方式等比較各測量方式之優勢。

--

1. 臺中市中興地政事務所 技士 E-mail: linbc220@gmail.com Tel: 04-23276841#220
目錄

一. 研究緣起與目的 .. 1
 1.1. 研究動機 ... 1
 1.2. 研究目的 ... 2

二. 問題之背景與現況 ... 2
 2.1. e-GNSS 動態即時定位原理 ... 2
 2.2. 應用 e-GNSS 即時動態定位系統之限制 4
 2.2.1. 透空率限制 .. 4
 2.2.2. 與 TWD97 坐標系統差異 4
 2.2.3. 坐標轉換殘差影響 ... 5

三. 研究方法與內容 .. 6
 3.1. 研究區域 ... 6
 3.2. 研究方法 ... 8
 3.2.1. 靜態 GPS 衛星觀測 ... 9
 3.2.2. e-GNSS 動態定位系統觀測 10

四. 研究發現與結論 .. 15
 4.1. GPS 衛星觀測成果與 TWD97 系統一致 15
 4.2. e-GNSS 動態即時定位精度合乎規範 17
 4.3. e-GNSS 成果套合至地籍坐標精度最佳 18

五. 建議事項 .. 23

六. 參考文獻 .. 28
一. 研究緣起與目的

1.1. 研究動機

土地複丈方式依地籍圖保存方式可區分為圖解法與數值法，圖解法為人詬病之問題在於測量成果無法妥善保存，常造成不同階段施測成果有所差異，使得民眾對於地政事務所測量精度有所誤解，面對現場民眾之質疑將增加測量人員進行複丈作業之複雜度。

隨著地籍圖圖解數化作業完成，測量儀器也由平板儀演進為經緯儀，測量精度進步為數公分級，地政事務所開始不論圖解區或數值區皆以經緯儀進行施測，歷經各地段加密圖根佈設，配合各類隨身智慧裝置搭配對應之外業測繪軟體，每次測量成果皆可以數值記錄方式完整保存，使得複丈精度均一化，不因施測人員與時間不同而有差異。

但圖根點（銅標、大道釘等）常因道路施工、外力破壞導致遺失，倖存之圖根點也常存在通視不良問題，為此需要耗費大量時間與人力從遠處圖根點為基準進行圖根補建作業，依據誤差傳播定律，導線精度將隨距離與測站數量增加而降低，若無附合導線可供平差約制時，其精度讓人存疑。

現內政部國土測繪中心已建置完成 e-GNSS 即時動態定位系統 (http://www.egnss.nlsc.gov.tw/)，採用 VBS-RTK 作為核心定位技術，由建置於全國各地之衛星定位基準站，以每天 24 小時每 1 秒之連續性衛星觀測資料組成 GNSS 網絡，再配合最鄰近的實體基準站觀測資料，產製一個虛擬的基準站做為 RTK 主站，只要在可以同時接收 5 顆 GPS 衛星訊號的地方，都可以利用 GPRS 等無線上網的方式，在極短的時間內獲得高精度之定位成果。

若能應用 e-GNSS 即時動態定位系統於圖根點補建，除可克服圖根點位相互通視不良之問題外，亦能克服短基線施測問題，其即時高精度之定位成果更能增進圖根點補建工程之效率。
1.2. 研究目的

地政事務所通常由單一測量編組進行複丈相關作業，恰與 e-GNSS 即時動態定位系統作業方式密合，成果也經相關文獻證明能應用於地籍測量，但施測方式不同以往，需依賴行動網路達到即時傳輸運算目地，在本所未進行相關測試時，多數人員對於系統穩定性與操作便利性感到存疑，為此本研究希望能將 e-GNSS 即時動態系統成果與傳統測量方式綜合比較，以此經驗於他人參考。

本研究先採用 GPS 靜態接收方式，透過傳統多組測量小組於多基準站同時施測，並將 GPS 觀測資料進行網形平差，之後應用單人單機於不同基準站透過 e-GNSS 即時動態定位系統取得觀測資料，將原始資料、三維轉換、參數轉換後成果交叉比對，以客觀精度分析評論 e-GNSS 即時動態定位能否達到精度規範，並探討何種模式最適合地籍測量，同時就施測所需時間、人力消耗、解算方式等比較各測量方式之優勢。

二. 問題之背景與現況

2.1. e-GNSS 動態即時定位原理

全球定位系統 (Global Positioning System，簡稱 GPS) 原為美國為軍事上定位及導航目的而發展，後擴大計畫使其應用於民間定位測量。整個系統共有 24 顆衛星均勻分佈於 6 軌道面上，衛星軌道近乎圓形，衛星高度約兩萬公里，繞行地球一週約 12 小時，如此可確保在世界上任何時間任何地點皆可同時觀測到 4 至 7 顆衛星，以利導航及精確定位測量之應用，目前已大量應用於交通 (航運、海運、車輛等) 即時導航、軌跡紀錄及高精度測量。

由於 GPS 是透過衛星不斷向地面發射訊號，地面使用者則使用 GPS 接收儀接收來自不同衛星之各類電碼與載波訊號，求得衛星與 GPS 接收儀間之距離，再配合後方交會法求得 GPS 接收儀所在位置。

由於 GPS 衛星高度位於大氣層之上，其訊號發送後經過大氣層將產生電離層、對流層延遲，同時還有軌道、衛星時鐘、衛星幾何分佈、多路徑效應、接收儀等相關誤差，導致 GPS 即時定位精度約在公尺級別，之後發展
出 DGPS (Differential Global Positioning System) 差分定位技術，利用已知參考坐標點的固定地面站向外廣播衛星修正訊號，GPS 接收了地面站的修正信號後可以用來修正來自衛星信號的誤差，以獲得更高的定位精度。

往後又以 DGPS 差分定位技術原理發展成為 RTK (real time kinematic) 動態定位技術, 在地面已知點架設固定參考基站，由另外 GPS 接收儀成立移動站，兩者以無線電方式進行溝通，利用已知基站坐標點測量計算出誤差值，進行修正藉此獲得公分級的即時定位成果，具有施測迅速、移動快速，且不需後處理的優點。

但以 RTK 進行即時動態定位，由於修正量是由固定參考基站計算而來，定位精度完全依靠單一基站數據，無法得知隱藏性誤差，導致無法全面監控測量品質，且透過無線電波溝通，移動站與基站距離需控制在 6~10km 內方可達到公分級定位精度 (何維信、詹君正. 2010)，實務上多限制於 2km 之內，雖說一般地籍測量之測區皆在此距離內，但單一參考基站可靠性卻是一大問題。

VBS-RTK (Virtual Base Station) 即時動態定位技術是由多組 GPS 基準站全天候連續地接收衛星資料，並經由行動網路與控制中心連接，計算出區域改正參數，再配合最鄰近的實體基準站觀測資料，藉以模擬出移動站附近之虛擬基準站相關資料；該虛擬基準站的觀測數據將會與移動站之實際接收的觀測數據及誤差模型具有極高相關性，系統誤差即可透過 RTK 差分計算消除，使用者可快速獲得高精度之即時動態定位成果。

實際應用時，VBS-RTK 使用者只需在移動站上架設 GPS 接收儀（移動站需位於 VBS-RTK 服務框架內），並將相關資訊透過 GPRS 等行動通訊協定與控制中心傳輸資料，即可求解出高精度定位資訊。

e-GNSS 是內政部國土測繪中心基於 VBS-RTK 之即時動態定位服務，採用網路傳輸技術即時結合多個基準站觀測資料，建構區域性定位誤差改正模型，有效擴展 RTK 的作業距離，並建置 24 小時連續觀測的固定式基準站，使用者不須自行架設主站，可節省作業時間，降低作業成本，各基準站長期
連綿的觀測資料經過嚴密的基線計算及網形平差分析，可提升基準站間之相對精度。

2.2. 應用 e-GNSS 即時動態定位系統之限制

e-GNSS 即時動態定位系統雖可快速獲得高精度之定位成果，惟實際應用時仍存在部分限制，除行動網路與 GPS 接收儀支援度等設備問題可直接透過升級來解決外，其原生問題如下列所示：

2.2.1. 透空率限制

舉凡所有 GPS 測量皆存在此限制，當移動站所處透空不佳時，將產生 GPS 接收訊號降低、衛星分佈形狀不良、多路徑效應增加等影響，縱使 e-GNSS 定位採用 VBS-RTK 能透過控制中心解算修正量，但 e-GNSS 產生之虛擬基站仍需配合移動站位置當作起始運算，初始定位精度低落嚴重時將導致無法求得 RTK-Fixed 虛擬基站坐標，此問題應用於市區大樓林立與山區茂密樹叢時特別嚴重，移動站選取務必考量透空良好區域。

2.2.2. 與 TWD97 坐標系統差異

e-GNSS 坐標系統為其自帶之 VBS-RTK 系統，當位處台灣本島時，與 TWD97 法定坐標系統有所差異，除 GPS 接收儀必須支援 RTCM3.0 以上方可支援 TTG_TWD97 登錄點，透過即時坐標轉換為 TWD97 系統(相關參數必須設定完成)，其餘無法支援 RTCM3.0 者必須經由後處理方可獲得，使用時需留意各登錄點之坐標系統差異(詳表 1，資料來源 http://www.egnss.nlsc.gov.tw/avbs-2.htm)。

4
表 1：e-GNSS 各登錄點對應資訊

<table>
<thead>
<tr>
<th>登錄點名稱</th>
<th>测量成果坐標系統</th>
<th>RTCM 版本</th>
<th>有效服務範圍</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taiwan</td>
<td>e-GNSS</td>
<td>RTC3.1</td>
<td>台灣本島各縣市</td>
</tr>
<tr>
<td>Taiwan_RTCM23</td>
<td>e-GNSS</td>
<td>RTCM 2.3</td>
<td></td>
</tr>
<tr>
<td>TTG_TWD97</td>
<td>平面:TWD97 高程:TWVD2001 正高</td>
<td>RTCM 3.1 (須使用廣播或自動坐標系統)</td>
<td></td>
</tr>
<tr>
<td>Kinmen_Mazu_Penghu</td>
<td>平面:TWD97 高程:TWD97 橢球高</td>
<td>RTCM 2.3</td>
<td>金門縣連江縣澎湖縣</td>
</tr>
</tbody>
</table>

資料來源：http://www.egnss.nlsc.gov.tw/avbs-2.htm

2.2.3. 坐標轉換殘差影響

由於 e-GNSS 與 TWD97 坐標系統是利用七參數轉換對台灣全島進行運算，由內政部國土測繪中心所公佈之【殘差網格修正模型示意圖】(圖 1，資料來源 http://www.egnss.nlsc.gov.tw/egnss-1.html)，由圖上得知，台灣西部區域如台南、高雄、屏東；東部區域如花蓮、台東等縣市，加上部分沿海區域，其殘差值高於平均，表示其系統誤差高，於殘差值較高區域進行 e-GNSS 定位時，最好能找尋該區其他可靠控制點進行約制，確保定位精度。
三. 研究方法與內容

為分析 e-GNSS 即時動態定位系統精度表現，本研究選定臺灣市整體開發地區單元二作為研究區域，並經傳統長時間靜態 GPS 觀測資料進行網形平差，了解該區 GPS 坐標系統與法定 TWD97 坐標系統是否一致，最後進行 e-GNSS 即時動態系統獲得控制點觀測資料，藉各種坐標轉換模式與已知點計算較差，藉此評估精度差異。

3.1. 研究區域

研究區域選定臺灣市整體開發地區單元二，為法定 TWD97 數值坐標系統，重劃會交付成果已經檢測，確認成果符合相關規範。選定區域北至向上路三段、西至環中路四段、東至黎明路一段、南至永鎮巷(如圖 2)，該地點屬低密度開發區域，現場仍以空地、低樓層建築為主，透空率良好，符合 GPS 測量要件。
研究區域主要以單元二內南屯區永春段、新富段為主，特性為重劃完成日期迄今不遠且點交時經過檢測，表示圖根點與界址點位關係可視為無誤，本研究時將重點專注於圖根點差異，藉由坐標較差來評估整體精度，降低研究複雜度；同時研究區域包含南屯區永定段(圖解區)，除可由單元二數值坐標來檢核 GPS 觀測數據外，未來更可將 e-GNSS 成果應用至永定段，藉此測試 e-GNSS 於不同區域之適應能力。
3.2. 研究方法

規劃兩階段外業作業，於研究區域選定控制點網形分佈後，第一階段先進行靜態 GPS 衛星觀測，藉由長時間且多組測站同步持續觀測，所得觀測資料可消除 GPS 衛星大部份系統誤差，藉此獲得公分級精度；第二階段開始於抽選上開作業控制點作為 e-GNSS 即時動態定位系統觀測對象，最後交叉分析【TWD97 數值地籍坐標】、【靜態 GPS 網形平差成果】、【e-GNSS 動態即時定位成果】差異，藉此評定 e-GNSS 系統成果表現，流程圖詳見圖 3。

![研究流程圖](圖 3：研究流程圖)
3.2.1. 靜態 GPS 衛星觀測

作業定於 104 年 6 月間實施 GPS 衛星定位測量外業觀測，測區附近已知控制點共 18 點，包含三等衛星控制點 2 點及歷年加密控制點 16 點 (如表 2)，並由臺中市政府地政局協助觀測，使用 9 部 Javad Triumph-1 (https://www.javad.com/jgnss/products/receivers/triumph-1.html) 衛星定位接收儀，同步觀測 4 個時段。觀測參數：遮蔽角 15°、5 秒記錄 1 筆，每時段觀測 60 分鐘，共計 2 萬 5,920 筆觀測資料，觀測時刻表如表 3 所示。

表 2：GPS 控制點相關資訊

<table>
<thead>
<tr>
<th>等級</th>
<th>點名</th>
<th>縱坐標 (m)</th>
<th>橫坐標 (m)</th>
<th>幾何高 (m)</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B034</td>
<td>2671003.017</td>
<td>213407.630</td>
<td>82.406</td>
<td>三等衛星控制點</td>
</tr>
<tr>
<td>3</td>
<td>B038</td>
<td>2669601.582</td>
<td>214818.460</td>
<td>98.468</td>
<td>三等衛星控制點</td>
</tr>
<tr>
<td>4</td>
<td>GD23</td>
<td>2669820.430</td>
<td>212551.452</td>
<td>-</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GD24</td>
<td>2669511.197</td>
<td>212871.826</td>
<td>-</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GE100N</td>
<td>2670361.910</td>
<td>212135.221</td>
<td>70.308</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GE23</td>
<td>2671044.496</td>
<td>212842.149</td>
<td>78.727</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GE38</td>
<td>2671125.838</td>
<td>212296.345</td>
<td>77.291</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GE39</td>
<td>2670590.843</td>
<td>212979.825</td>
<td>75.209</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GE40</td>
<td>2670165.348</td>
<td>212837.299</td>
<td>72.599</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GE94N</td>
<td>2671162.749</td>
<td>211983.149</td>
<td>76.026</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GE97</td>
<td>2671001.552</td>
<td>212233.787</td>
<td>75.694</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GE98N</td>
<td>2670628.304</td>
<td>211964.341</td>
<td>71.759</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GE99</td>
<td>2670355.899</td>
<td>211872.820</td>
<td>70.028</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GEB02</td>
<td>2670981.782</td>
<td>212633.983</td>
<td>-</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GEB03</td>
<td>2670519.447</td>
<td>212616.523</td>
<td>-</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GZ11</td>
<td>2670220.302</td>
<td>212276.776</td>
<td>69.975</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GZ12</td>
<td>2670433.959</td>
<td>212469.297</td>
<td>72.950</td>
<td>加密控制點</td>
</tr>
<tr>
<td>4</td>
<td>GZ13</td>
<td>2670605.049</td>
<td>212253.014</td>
<td>72.717</td>
<td>加密控制點</td>
</tr>
</tbody>
</table>

表 3：GPS 衛星定位測量觀測時段表
<table>
<thead>
<tr>
<th></th>
<th>第一組</th>
<th>第二組</th>
<th>第三組</th>
<th>第四組</th>
<th>第五組</th>
<th>第六組</th>
<th>第七組</th>
<th>第八組</th>
<th>第九組</th>
</tr>
</thead>
<tbody>
<tr>
<td>測段 1</td>
<td>B038</td>
<td>B034</td>
<td>GF081</td>
<td>GF082</td>
<td>GF083</td>
<td>GE39</td>
<td>GD24</td>
<td>GD23</td>
<td>GE40</td>
</tr>
<tr>
<td>儀器高 (m)</td>
<td>1.565</td>
<td>1.352</td>
<td>1.686</td>
<td>1.831</td>
<td>1.810</td>
<td>1.691</td>
<td>1.622</td>
<td>1.635</td>
<td>1.781</td>
</tr>
<tr>
<td>測段 2</td>
<td>GZ13</td>
<td>GE98N</td>
<td>GE99</td>
<td>GZ12</td>
<td>GE100N</td>
<td>GZ11</td>
<td>GD24</td>
<td>GD23</td>
<td>GE40</td>
</tr>
<tr>
<td>儀器高 (m)</td>
<td>1.670</td>
<td>1.775</td>
<td>1.672</td>
<td>1.834</td>
<td>1.811</td>
<td>1.666</td>
<td>1.622</td>
<td>1.746</td>
<td>1.781</td>
</tr>
<tr>
<td>測段 3</td>
<td>GZ13</td>
<td>GEB02</td>
<td>GF081</td>
<td>GZ12</td>
<td>GE35</td>
<td>B034</td>
<td>GE39</td>
<td>GEB03</td>
<td>GE40</td>
</tr>
<tr>
<td>儀器高 (m)</td>
<td>1.670</td>
<td>1.920</td>
<td>1.733</td>
<td>1.834</td>
<td>1.796</td>
<td>1.210</td>
<td>1.760</td>
<td>1.719</td>
<td>1.781</td>
</tr>
<tr>
<td>測段 4</td>
<td>GZ13</td>
<td>GEB02</td>
<td>GE98N</td>
<td>GE94N</td>
<td>GE35</td>
<td>B034</td>
<td>GE38</td>
<td>GE97</td>
<td>GE99</td>
</tr>
<tr>
<td>儀器高 (m)</td>
<td>1.670</td>
<td>1.920</td>
<td>1.678</td>
<td>1.810</td>
<td>1.796</td>
<td>1.210</td>
<td>1.737</td>
<td>1.783</td>
<td>1.794</td>
</tr>
</tbody>
</table>

3.2.2. e-GNSS 動態定位系統觀測

作業定於 104 年 8 月間，觀測對象由靜態 GPS 控制點中挑選 11 點，並增加 BC018、BC035、BC042 加密圖根點作為檢核對象，點位均勻分佈於研究區域中 (如圖 5 所示)，採用 Trimble 5800 Rover 衛星定位系統作為接收儀，以單機作業方式逐點觀測，觀測時皆使用 2m 標竿配合雙叉支架 (見圖 4) 以維持穩定，每次觀測皆等待 RTK-Fixed 後接收 15 秒後儲存，每站紀錄 3 測回以平均值求得坐標，相關資訊如表 4 所示。
圖 4：儀器架設方式
表 4： e-GNSS 測量計畫內容

<table>
<thead>
<tr>
<th>GPS 接收儀</th>
<th>Trimble 5800 Rover</th>
</tr>
</thead>
<tbody>
<tr>
<td>儀器架設方式</td>
<td>2m 標竿配合雙叉支架維持水平</td>
</tr>
<tr>
<td>連線 IP</td>
<td>210.241.63.193；port 81</td>
</tr>
<tr>
<td>Mount Point</td>
<td>Taiwan_RTCM23</td>
</tr>
<tr>
<td>紀錄收斂秒數</td>
<td>15 秒以上</td>
</tr>
<tr>
<td>坐標計算方式</td>
<td>每站紀錄 3 次求平均</td>
</tr>
</tbody>
</table>

圖 5：e-GNSS 觀測點分佈圖

![三維坐標轉換服務作業畫面](image)

圖 6：三維坐標轉換服務作業畫面
操作時必須先以 e-GNSS 即時動態定位系統會員帳號登入，登入後點擊【三維坐標轉換】連結後，點擊【多點運算】按鈕，將 e-GNSS 接收資料整理為範例格式後上傳(如圖 7)，系統將立即運算產製 TWD97 坐標成果。

圖 7：三維轉換多點運算功能畫面

格式為注解，各欄位分隔符號為逗號，
坐標格式 (XYZ|NEh|BLh)|,...,
號碼標記 (X/Lat/N), 輸入坐標 2 (Y/Lon/E), 輸入坐標 3 (Z/h/h),
T291, NEh, 2424199.328, 233704.075, 28, 591
T004, BLh, 21.220183, 120.73711914, 51.246
S441, XYZ, -3035458.04, 5082179.078, 2368886.009
四. 研究發現與結論

交叉分析【TWD97 數值地籍坐標】【靜態 GPS 網形平差成果】【e-GNSS 動態即時定位成果】後，可獲得以下結論:

4.1. GPS 衛星觀測成果與 TWD97 系統一致

將 2 萬 5,920 筆觀測資料進行全網平差後，已知點距離檢測精度最低為 1/5179 (GE38→GE97:139m)，方位角檢測較差最低為 18.67 秒(GE38→GE97:139m)，較差皆在 6 公分以內(詳表 5)。

表 5： GPS 衛星測量平差成果表

<table>
<thead>
<tr>
<th>點號</th>
<th>N-坐標(m)</th>
<th>E-坐標(m)</th>
<th>N-坐標(m)</th>
<th>E-坐標(m)</th>
<th>dN(m)</th>
<th>dE(m)</th>
<th>差值</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 B034</td>
<td>2671003.010</td>
<td>213407.652</td>
<td>2671003.017</td>
<td>213407.630</td>
<td>0.007</td>
<td>-0.022</td>
<td>0.023</td>
</tr>
<tr>
<td>2 B038</td>
<td>2669601.582</td>
<td>214818.460</td>
<td>2669601.582</td>
<td>214818.460</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3 GD23</td>
<td>2669820.414</td>
<td>212551.494</td>
<td>2669820.430</td>
<td>212551.452</td>
<td>0.016</td>
<td>-0.042</td>
<td>0.045</td>
</tr>
<tr>
<td>4 GD24</td>
<td>2669511.191</td>
<td>212871.877</td>
<td>2669511.197</td>
<td>212871.826</td>
<td>0.006</td>
<td>-0.051</td>
<td>0.051</td>
</tr>
<tr>
<td>5 GE100N</td>
<td>2670361.891</td>
<td>212135.263</td>
<td>2670361.910</td>
<td>212135.221</td>
<td>0.019</td>
<td>-0.042</td>
<td>0.046</td>
</tr>
<tr>
<td>6 GE35</td>
<td>2671044.483</td>
<td>212842.168</td>
<td>2671044.496</td>
<td>212842.149</td>
<td>0.013</td>
<td>-0.019</td>
<td>0.023</td>
</tr>
<tr>
<td>7 GE38</td>
<td>2671125.812</td>
<td>212296.380</td>
<td>2671125.838</td>
<td>212296.345</td>
<td>0.026</td>
<td>-0.035</td>
<td>0.044</td>
</tr>
<tr>
<td>8 GE39</td>
<td>2670590.844</td>
<td>212979.857</td>
<td>2670590.843</td>
<td>212979.825</td>
<td>-0.001</td>
<td>-0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>9 GE40</td>
<td>2670165.346</td>
<td>212837.333</td>
<td>2670165.348</td>
<td>212837.299</td>
<td>0.002</td>
<td>-0.034</td>
<td>0.034</td>
</tr>
<tr>
<td>10 GE94N</td>
<td>2671162.730</td>
<td>211983.184</td>
<td>2671162.749</td>
<td>211983.149</td>
<td>0.019</td>
<td>-0.035</td>
<td>0.040</td>
</tr>
<tr>
<td>11 GE97</td>
<td>2671001.556</td>
<td>212233.823</td>
<td>2671001.552</td>
<td>212233.787</td>
<td>-0.004</td>
<td>-0.036</td>
<td>0.036</td>
</tr>
<tr>
<td>12 GE98N</td>
<td>2670628.287</td>
<td>211964.383</td>
<td>2670628.304</td>
<td>211964.341</td>
<td>0.017</td>
<td>-0.042</td>
<td>0.045</td>
</tr>
<tr>
<td>13 GE99</td>
<td>2670355.886</td>
<td>211872.864</td>
<td>2670355.899</td>
<td>211872.820</td>
<td>0.013</td>
<td>-0.044</td>
<td>0.046</td>
</tr>
<tr>
<td>14 GEB02</td>
<td>2670981.771</td>
<td>212634.023</td>
<td>2670981.782</td>
<td>212633.983</td>
<td>0.011</td>
<td>-0.040</td>
<td>0.041</td>
</tr>
<tr>
<td>15 GEB03</td>
<td>2670519.431</td>
<td>212616.556</td>
<td>2670519.447</td>
<td>212616.523</td>
<td>0.016</td>
<td>-0.033</td>
<td>0.037</td>
</tr>
<tr>
<td>16 GZ11</td>
<td>2670220.285</td>
<td>212276.802</td>
<td>2670220.302</td>
<td>212276.776</td>
<td>0.017</td>
<td>-0.026</td>
<td>0.031</td>
</tr>
<tr>
<td>17 GZ12</td>
<td>2670433.944</td>
<td>212469.324</td>
<td>2670433.959</td>
<td>212469.297</td>
<td>0.015</td>
<td>-0.027</td>
<td>0.031</td>
</tr>
<tr>
<td>18 GZ13</td>
<td>2670605.034</td>
<td>212253.049</td>
<td>2670605.049</td>
<td>212253.014</td>
<td>0.015</td>
<td>-0.035</td>
<td>0.038</td>
</tr>
</tbody>
</table>

共 18 個已知點，其中最大較差 dN(GE38:0.026) dE(GD24:-0.051) d(GD24:0.051)
由 GPS 實際點位觀測網絡圖(如圖 8)對照 GPS 衛星測量平差成果表，其中三等衛星控制點 B038(圖 8 紅框位置)分佈於全網最東南側，距離其他控制點距離亦差異甚大，對照其他點位較差分佈平均，應存在系統誤差尚未消除，可推測若能在網絡西側加入三等衛星控制點進行約制，其成果精度應可再提升；另全網已知點距離檢測精度皆優於 1/5,000，仍符合地籍測量實施規則第 64 條簡易平差計算之規定，可視為研究區域內【GPS 測量成果】與【TWD97 地籍坐標系統】相吻合。

圖 8：GPS 實際點位觀測網絡圖
4.2. e-GNSS 動態即時定位精度合乎規範

由靜態 GPS 網形平差成果判斷，GPS 測量可直接應用於 TWD97 地籍坐標系統，視為【TWD97 數位地籍坐標】無異差，因此本階段分析重點著重於【e-GNSS 動態即時系統】與【TWD97 數位地籍坐標】間差異。

本階段第一步驟先觀察 e-GNSS (Taiwan RTCM23) 原始成果部份，當 e-GNSS 成果為非即時轉換成果，可由表 6 較差明顯看出具有約 45 公分之系統偏移，未經任何後處理前不宜貿然使用。

表 6：e-GNSS(Taiwan_RTCM23)原始成果表

<table>
<thead>
<tr>
<th>點號</th>
<th>e-GNSS(Taiwan_RTCM23) N-坐標(m)</th>
<th>E-坐標(m)</th>
<th>已知點 N-坐標(m)</th>
<th>E-坐標(m)</th>
<th>dN(m)</th>
<th>dE(m)</th>
<th>差值</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC018</td>
<td>2670539.305 212143.559</td>
<td>0.221</td>
<td>-0.389</td>
<td>0.447</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC042</td>
<td>2670900.421 212095.780</td>
<td>0.242</td>
<td>-0.379</td>
<td>0.450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD035</td>
<td>2670805.548 212636.050</td>
<td>0.234</td>
<td>-0.382</td>
<td>0.448</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE35</td>
<td>2671044.249 212842.516</td>
<td>0.247</td>
<td>-0.367</td>
<td>0.442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE38</td>
<td>2671125.594 212296.708</td>
<td>0.244</td>
<td>-0.363</td>
<td>0.437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE39</td>
<td>2670590.607 212980.208</td>
<td>0.236</td>
<td>-0.383</td>
<td>0.450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE40</td>
<td>2670165.126 212837.676</td>
<td>0.222</td>
<td>-0.377</td>
<td>0.437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE94N</td>
<td>2671162.508 211983.518</td>
<td>0.241</td>
<td>-0.377</td>
<td>0.448</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEB03</td>
<td>2670519.216 212616.888</td>
<td>0.231</td>
<td>-0.365</td>
<td>0.431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZ100N</td>
<td>2670361.661 212135.591</td>
<td>0.249</td>
<td>-0.371</td>
<td>0.447</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZ11</td>
<td>2670220.043 212277.142</td>
<td>0.259</td>
<td>-0.366</td>
<td>0.449</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZ12</td>
<td>2670433.708 212469.671</td>
<td>0.251</td>
<td>-0.374</td>
<td>0.451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZ13</td>
<td>2670604.812 212253.402</td>
<td>0.237</td>
<td>-0.388</td>
<td>0.455</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZ99</td>
<td>2670355.648 211873.217</td>
<td>0.251</td>
<td>-0.397</td>
<td>0.470</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
接著將 e-GNSS (Taiwan_RTCM23)觀測成果經內政部國土測繪中心-三
維坐標轉換，獲得成果如表 7 所示，可得知轉換成果與 TWD97 一致，坐標
較差值皆低於 4 公分，已知點距離檢測精度最低為 1/6197 (GZ100N→BC018:
177m)，仍符合地籍測量實施規則第 64 條簡易平差計算規定。

表 7：e-GNSS 三維坐標轉換成果表

<table>
<thead>
<tr>
<th>已知點</th>
<th>dN(m)</th>
<th>dE(m)</th>
<th>差值</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC018</td>
<td>-0.019</td>
<td>-0.030</td>
<td>0.036</td>
</tr>
<tr>
<td>BC042</td>
<td>0.001</td>
<td>-0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>BD035</td>
<td>-0.005</td>
<td>-0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>GE35</td>
<td>0.008</td>
<td>-0.011</td>
<td>0.014</td>
</tr>
<tr>
<td>GE38</td>
<td>-0.004</td>
<td>-0.004</td>
<td>0.006</td>
</tr>
<tr>
<td>GE39</td>
<td>-0.003</td>
<td>-0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>GE40</td>
<td>-0.017</td>
<td>-0.024</td>
<td>0.029</td>
</tr>
<tr>
<td>GE94N</td>
<td>0.000</td>
<td>-0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>GEB03</td>
<td>-0.008</td>
<td>-0.010</td>
<td>0.013</td>
</tr>
<tr>
<td>GZ100N</td>
<td>0.009</td>
<td>-0.014</td>
<td>0.017</td>
</tr>
<tr>
<td>GZ11</td>
<td>0.019</td>
<td>-0.010</td>
<td>0.021</td>
</tr>
<tr>
<td>GZ12</td>
<td>0.011</td>
<td>-0.018</td>
<td>0.021</td>
</tr>
<tr>
<td>GZ13</td>
<td>-0.003</td>
<td>-0.031</td>
<td>0.031</td>
</tr>
<tr>
<td>GZ99</td>
<td>0.010</td>
<td>-0.038</td>
<td>0.039</td>
</tr>
</tbody>
</table>

4.3. e-GNSS 成果套合至地籍坐標精度最佳

第一階段將所有 GPS 控制點配合對應 TWD97 地籍圖根點坐標進行四參
數轉換(扣除 BC018、BC042、BC035 加密圖根點)，整體較差降至 2.7 公分
以下(見表 8)，已知點距離檢測精度最低為 1/6022 (GZ100N→BC018;177m)，
雖略高於 e-GNSS 三維轉換，但差值標準偏差由 0.009 降至 0.005，表示整體
點位更加拉近地籍坐標系統，進行複丈案件時與界址相對關係偏移量可預期
更少。

表 8：e-GNSS 四參數轉換成果表(1)
<table>
<thead>
<tr>
<th></th>
<th>四參數轉換</th>
<th>已知點</th>
<th>較差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-坐標(m)</td>
<td>E-坐標(m)</td>
<td>N-坐標(m)</td>
</tr>
<tr>
<td>BC018</td>
<td>2670539.550</td>
<td>212143.182</td>
<td>2670539.526</td>
</tr>
<tr>
<td>BC042</td>
<td>2670900.669</td>
<td>212095.407</td>
<td>2670900.663</td>
</tr>
<tr>
<td>BD035</td>
<td>2670805.789</td>
<td>212635.678</td>
<td>2670805.782</td>
</tr>
<tr>
<td>GE35</td>
<td>2671044.489</td>
<td>212842.148</td>
<td>2671044.496</td>
</tr>
<tr>
<td>GE38</td>
<td>2671125.840</td>
<td>212296.338</td>
<td>2671125.838</td>
</tr>
<tr>
<td>GE39</td>
<td>2670590.843</td>
<td>212979.835</td>
<td>2670590.843</td>
</tr>
<tr>
<td>GE40</td>
<td>2670165.362</td>
<td>212837.298</td>
<td>2670165.348</td>
</tr>
<tr>
<td>GE94N</td>
<td>2671162.758</td>
<td>211983.147</td>
<td>2671162.749</td>
</tr>
<tr>
<td>GEB03</td>
<td>2670519.456</td>
<td>212616.513</td>
<td>2670519.447</td>
</tr>
<tr>
<td>GZ100N</td>
<td>2670361.906</td>
<td>212135.212</td>
<td>2670361.910</td>
</tr>
<tr>
<td>GZ11</td>
<td>2670220.285</td>
<td>212276.762</td>
<td>2670220.302</td>
</tr>
<tr>
<td>GZ12</td>
<td>2670433.949</td>
<td>212469.294</td>
<td>2670433.959</td>
</tr>
<tr>
<td>GZ13</td>
<td>2670605.056</td>
<td>212253.026</td>
<td>2670605.049</td>
</tr>
<tr>
<td>GZ99</td>
<td>2670355.896</td>
<td>211872.837</td>
<td>2670355.899</td>
</tr>
</tbody>
</table>

第二步驟將四參數轉換控制點降至 4 點 (GE35、GE40、GE94N、GZ99)，將控制點位分散於研究區域四周 (詳圖 9)，整體較差除 GZ11 拉高至 3.2 公分外，其餘點位降至 2 公分以下，較差標準偏差為 0.007，已知點距離檢測精度最低仍為 GZ100N→BC018，精度為 1/5637，與第一步驟比較差異量不大，表示外業實際應用時已知點均勻分佈於測區外圍，可降低必要觀測量同時兼顧平差精度。
圖 9：控制點分佈圖(2)

表 9：e-GNSS 四參數轉換成果表(2)

<table>
<thead>
<tr>
<th></th>
<th>四參數轉換</th>
<th>已知點</th>
<th>較差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-坐標(m)</td>
<td>E-坐標(m)</td>
<td>N-坐標(m)</td>
</tr>
<tr>
<td>BC018</td>
<td>2670539.546</td>
<td>212143.174</td>
<td>2670539.526</td>
</tr>
<tr>
<td>BC042</td>
<td>2670900.668</td>
<td>212095.399</td>
<td>2670900.663</td>
</tr>
<tr>
<td>BD035</td>
<td>2670805.787</td>
<td>212635.676</td>
<td>2670805.782</td>
</tr>
<tr>
<td>GE35</td>
<td>2671044.489</td>
<td>212842.148</td>
<td>2671044.496</td>
</tr>
<tr>
<td>GE38</td>
<td>2671125.842</td>
<td>212296.333</td>
<td>2671125.838</td>
</tr>
<tr>
<td>GE39</td>
<td>2670590.838</td>
<td>212979.836</td>
<td>2670590.843</td>
</tr>
<tr>
<td>GE40</td>
<td>2670165.352</td>
<td>212837.296</td>
<td>2670165.348</td>
</tr>
<tr>
<td>GE94N</td>
<td>2671162.761</td>
<td>211983.139</td>
<td>2671162.749</td>
</tr>
<tr>
<td>GEB03</td>
<td>2670519.451</td>
<td>212616.510</td>
<td>2670519.447</td>
</tr>
<tr>
<td>GZ100N</td>
<td>2670361.900</td>
<td>212135.204</td>
<td>2670361.910</td>
</tr>
<tr>
<td>GZ11</td>
<td>2670220.278</td>
<td>212276.755</td>
<td>2670220.302</td>
</tr>
<tr>
<td>GZ12</td>
<td>2670433.943</td>
<td>212469.289</td>
<td>2670433.959</td>
</tr>
<tr>
<td>GZ13</td>
<td>2670605.053</td>
<td>212253.020</td>
<td>2670605.049</td>
</tr>
<tr>
<td>GZ99</td>
<td>2670355.890</td>
<td>211872.826</td>
<td>2670355.899</td>
</tr>
</tbody>
</table>
第三步驟將四參數轉換控制點選用距離精度與分佈最差之三點(BC018、GZ100N、GE13)，(詳表 10)，整體較差大幅拉高，點位較差超越 6 公分，整體來說無使用價值，但轉換控制點 BC018、GZ100N、GE13 本身精度依然低於 2 公分，表示控制點分佈應列為規劃重點，若網型分佈不佳，不論點位精度如何提升，仍因平差時外插效應而大幅降低精度;另一點則因 GZ11、GZ12 較差仍在合理範圍，說明外業複丈時，若透過 e-GNSS 観測測區附近圖根點並據以進行四參數轉換(控制點務必包覆測區)，以此補建圖根點仍可達到複丈案件之精度要求。

圖 10：控制點分佈圖(3)
表 10：e-GNSS 四參數轉換成果表(3)

<table>
<thead>
<tr>
<th></th>
<th>四參數轉換</th>
<th>已知點</th>
<th>較差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-坐標(m)</td>
<td>E-坐標(m)</td>
<td>N-坐標(m)</td>
</tr>
<tr>
<td>BC018</td>
<td>2670539.536</td>
<td>212143.177</td>
<td>2670539.526</td>
</tr>
<tr>
<td>BC042</td>
<td>2670900.622</td>
<td>212095.380</td>
<td>2670900.663</td>
</tr>
<tr>
<td>BD035</td>
<td>2670805.789</td>
<td>212635.615</td>
<td>2670805.782</td>
</tr>
<tr>
<td>GE35</td>
<td>2671044.484</td>
<td>212842.052</td>
<td>2671044.496</td>
</tr>
<tr>
<td>GE38</td>
<td>2671125.791</td>
<td>212296.279</td>
<td>2671125.838</td>
</tr>
<tr>
<td>GE39</td>
<td>2670590.884</td>
<td>212979.761</td>
<td>2670590.843</td>
</tr>
<tr>
<td>GE40</td>
<td>2670165.426</td>
<td>212837.265</td>
<td>2670165.348</td>
</tr>
<tr>
<td>GE94N</td>
<td>2671162.683</td>
<td>211983.110</td>
<td>2671162.749</td>
</tr>
<tr>
<td>GEB03</td>
<td>2670519.477</td>
<td>212616.472</td>
<td>2670519.447</td>
</tr>
<tr>
<td>GZ100N</td>
<td>2670361.905</td>
<td>212135.220</td>
<td>2670361.910</td>
</tr>
<tr>
<td>GZ11</td>
<td>2670220.306</td>
<td>212276.769</td>
<td>2670220.302</td>
</tr>
<tr>
<td>GZ12</td>
<td>2670433.966</td>
<td>212469.271</td>
<td>2670433.959</td>
</tr>
<tr>
<td>GZ13</td>
<td>2670605.045</td>
<td>212253.008</td>
<td>2670605.049</td>
</tr>
<tr>
<td>GZ99</td>
<td>2670355.876</td>
<td>211872.866</td>
<td>2670355.899</td>
</tr>
</tbody>
</table>

最後測試三參數轉換之差異，控制點比照第二步驟選取 GE35、GE40、GE94N、GZ99(網形分佈佳、四參數轉換成效良好)，整體較差都在 3 公分內 (見表 11)，已知點距離檢測精度最低仍為 GZ100N→BC018，精度為 1/6380，較差標準偏差為 0.007，與四參數轉換差異細微，說明實際複丈外業時可直接使用三參數轉換套合至地籍坐標系統，惟測區範圍擴大，尺度比帶來影響本研究尚未觸及，仍需進一步測試：現階段可確認一平方公里左右測區尺度比帶來影響不大，使用三參數轉換附加優勢為重測系統已內建此轉換，可直接接軌目前外業作業。
<table>
<thead>
<tr>
<th></th>
<th>四參數轉換</th>
<th>已知點</th>
<th>較差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-坐標(m)</td>
<td>E-坐標(m)</td>
<td>N-坐標(m)</td>
</tr>
<tr>
<td>BC018</td>
<td>2670539.548</td>
<td>212143.178</td>
<td>2670539.526</td>
</tr>
<tr>
<td>BC042</td>
<td>2670900.665</td>
<td>212095.403</td>
<td>2670900.663</td>
</tr>
<tr>
<td>BD035</td>
<td>2670805.785</td>
<td>212635.672</td>
<td>2670805.782</td>
</tr>
<tr>
<td>GE35</td>
<td>2671044.483</td>
<td>212842.141</td>
<td>2671044.496</td>
</tr>
<tr>
<td>GE38</td>
<td>2671125.835</td>
<td>212296.334</td>
<td>2671125.838</td>
</tr>
<tr>
<td>GE39</td>
<td>2670590.839</td>
<td>212979.827</td>
<td>2670590.843</td>
</tr>
<tr>
<td>GE40</td>
<td>2670165.360</td>
<td>212837.290</td>
<td>2670165.348</td>
</tr>
<tr>
<td>GE94N</td>
<td>2671162.754</td>
<td>211983.145</td>
<td>2671162.749</td>
</tr>
<tr>
<td>GEB03</td>
<td>2670519.453</td>
<td>212616.506</td>
<td>2670519.447</td>
</tr>
<tr>
<td>GZ100N</td>
<td>2670361.905</td>
<td>212135.207</td>
<td>2670361.910</td>
</tr>
<tr>
<td>GZ11</td>
<td>2670220.285</td>
<td>212276.756</td>
<td>2670220.302</td>
</tr>
<tr>
<td>GZ12</td>
<td>2670433.947</td>
<td>212469.288</td>
<td>2670433.959</td>
</tr>
<tr>
<td>GZ13</td>
<td>2670605.054</td>
<td>212253.021</td>
<td>2670605.049</td>
</tr>
<tr>
<td>GZ99</td>
<td>2670355.895</td>
<td>211872.833</td>
<td>2670355.899</td>
</tr>
</tbody>
</table>

五. 建議事項

透過以上分析，本研究有幾項建議可供參考：

1. e-GNSS 符合精度規範，但不宜直接使用

研究成果發現，e-GNSS 成果如同內政部國土測繪中心 e-GNSS 時即動態定位入口網所述，平面精度優於 5 公分，高程精度優於 10 公分，且實際應用於 TWD97 地籍坐標系統時精度皆符合相關規範，但單純就 TWD97 坐標值較差而言，部份誤差已逼近數值區作業規範極限(詳表 7)，直接應用於地籍測量恐有隱藏高危險性之風險。
2. e-GNSS 應用於地籍測量，需配合已知點套合

再就本研究表 8，表 9，表 11 成果所示，將 TWD97 地籍坐標系統中選
取分佈均勻之圖根點作為已知點進行 e-GNSS 成果套合，可將 e-GNSS 較差
約制在 2 公分，且研究中採用低密度控制點轉換方式，實際應用時可在測區
附近加測可靠界址點，由坐標參數轉換乙節成果可得知，由局部區域高密度
控制點套合方式，可產製最貼合地籍坐標之成果，藉由此成果進行複丈將與
地籍坐標具有高度一致牲。

3. e-GNSS 應用於圖根點補建效率高

本次研究 e-GNSS 觀測資料採取單筆 15 秒收斂後記錄，每站紀錄 3 次，
由表 12 可得知 3 次觀測紀錄之變異量差異不大，作業時亦發現每站等待
RTK-Fixed 後，每站約在 6~8 秒即收斂完成，因此實際使用可將每站收斂秒
數設定 10~15 秒，每站只需記錄 3 次內即可獲得可靠成果。

表 12：e-GNSS 各點觀測值標準偏差

<table>
<thead>
<tr>
<th>點號</th>
<th>N</th>
<th>E</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE35</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>BD035</td>
<td>0.001</td>
<td>0.002</td>
<td>0.008</td>
</tr>
<tr>
<td>GEB035</td>
<td>0.000</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>GE39</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>GE40</td>
<td>0.002</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>GZ12</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>GZ13</td>
<td>0.001</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>GZ11</td>
<td>0.002</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>GZ100</td>
<td>0.003</td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td>GZ99</td>
<td>0.003</td>
<td>0.001</td>
<td>0.009</td>
</tr>
<tr>
<td>BC018</td>
<td>0.001</td>
<td>0.002</td>
<td>0.010</td>
</tr>
<tr>
<td>BC042</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>GE94</td>
<td>0.001</td>
<td>0.011</td>
<td>0.004</td>
</tr>
<tr>
<td>GE38</td>
<td>0.002</td>
<td>0.000</td>
<td>0.002</td>
</tr>
</tbody>
</table>
由於 e-GNSS 觀測時不需考慮各點位間通視關係，對照本次研究進行過程，平均每站含儀器架設、連線等待 RTK-Fixed 至數據紀錄完成約 3~5 分鐘，相較於傳統經緯儀施測模式，e-GNSS 更加適合大範圍或長距離之施測作業，具有效率高且精度均勻之優點（詳表 13），此特性適合運用在圖根點補建工作，但補建成果最好 [有分佈均勻之已知點進行約制]。

表 13：e-GNSS 施測特性表

<table>
<thead>
<tr>
<th></th>
<th>經緯儀</th>
<th>e-GNSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>每站觀測時間</td>
<td>約6~8分鐘（含儀器整置、標定、照準）</td>
<td>約3~5分鐘（含儀器整置、等待連線、數據收斂時間）</td>
</tr>
<tr>
<td>補點設立情形</td>
<td>考量測站通視性，平均每60~80公尺需架設補點一站，觀測時間隨補點數量倍增，不易於半小時內完成</td>
<td>不需考量通視性，直接引點至目標區域，每次補點數量可固定在5點內，半小時內可完成</td>
</tr>
<tr>
<td>地形限制</td>
<td>點對間必須通視良好，選點限制較大</td>
<td>單點透空率良好即可</td>
</tr>
<tr>
<td>誤差分佈</td>
<td>與導線方向具有相依性，不易全面平差</td>
<td>接收資料已經過程理，各點位誤差分佈均勻，無明顯方向性</td>
</tr>
</tbody>
</table>

另 e-GNSS 時即動態定位系統需要良好透空率，應用於市區將是一大限制，實際圖根點補建時可將圖根點埋設於街廓截角或公園等遮蔽密度低區域，埋設時可同時通視現存圖根點，如此即可配合經緯儀作業來彌補不足同時兼顧整體作業效率。
4. 應用 e-GNSS 成本高，測量時程必須緊湊安排

依據國土測繪中心 e-GNSS 時即動態定位系統收費標準，地政事務所使用 VBS-RTK 即時性衛星動態定位服務為每帳號新臺幣 210 元/每日，以本所常態外業編組 8 組計算，每日需新臺幣 1,680 元，每月需增加 3 萬以上開銷，若以該服務進行常態性復丈案件將是一大負荷，使用上應規劃鄰近區域集中施測，務必於短時間內完成相關測量作業，以達作業效率與成本控管間平衡。

5. 無法獲得 RTK-Fixed，可先將儀器移往空曠處

研究進行時如圖 11 所示，有時周遭透空率不算太差(三層樓建築、樹蔭等)但仍無法獲取 RTK-Fixed 時，可先將儀器移往附近空曠處，待 RTK-Fixed 後移往測站繼續接收並解算坐標，雖收斂坐標跳動幅度大，精度將會降低 2~4 公分，以此精度進行整體平差將拖累整體精度；但當測區透空率皆不佳時，增加測區已知點觀測數量，必要時進行小區域平差，可作為必要時權宜測量方式。
圖 11：透空率影響 e-GNSS 定位現況圖
六．參考文獻

1. 何維信、詹君正，2010，虛擬基準站即時動態定位辦理土地複丈精度之研究，《台灣土地研究》，第 13 卷，第 2 期，頁 79-100。

2. 劉冠岳、王建得、黃國良、何定遠、鄭彩堂，2014，VBS-RTK 應用於界址測量之探討，《地籍測量》，第 33 卷，第 2 期，頁 21-38。

3. 內政部國土測繪中心自行研究報告，2014，三維即時坐標轉換輔助 VBS-RTK 定位技術獲得法定坐標系統測量成果之研究

4. 內政部國土測繪中心 e-GNSS 即時動態定位系統入口網站 (http://www.egnss.nlsc.gov.tw/)
